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1 Introduction

We proposed a novel characterization of errors for nmnerical weather predictions. In its

simplest form we decompose tile error into a part attributal)le to phase errors and a remain-

der. Tile t)hase error is represented in tile same fashion as a velocity field and is required to

vary slowly and smoothly with position. A general distortion representation allows for the

displacement and amplification or bias correction of forecast anomalies.

Characterizing and decomposing forecast error in this way has two important applica-

tions, which we term the assessment application and the objective analysis application. For

the assessment application, our approach results in new objective measures of forecast skill

which are more in line with subjective measures of forecast skill and which are useful in

validating models and diagnosing their shortcomings. With regard to the objective analysis

application, meteorological analysis schemes balance forecast error and observational error

to obtain an optimal analysis. Presently, representations of the error covariance matrix used

to measure the forecast error are severely limited. For the objective analysis application our

approach will improve analyses by providing a more realistic measure of the forecast error.

We expect, a priori, that our approach should greatly improve the utility of remotely sensed

data which have relatively high horizontal resolution, but which are indirectly related to the

conventional atmospheric variables.

In this project we are initially focusing on the assessment application, restricted to a

realistic but univariate 2-dimensional situation. Specifically we study the forecast errors

of the sea level pressure (SLP) and 500 hPa geopotential height fields for forecasts of the

short and medium range. Since the forecasts are generated by the GEOS (Goddard Earth

Observing System) data assimilation system with and without ERS 1 scatterometer data,

these preliminary studies serve several purposes. They (1) provide a testbed for the use of

the distortion representation of forecast errors, (2) act as one means of validating the GEOS

data assimilation system and (3) help to describe the impact of the ERS 1 scatterometer
data.

2 Data

Forecasts and verifying analyses made with the GEOS data assimilation and forecast system

(Schubert et al. 1993 [11]) are used here. The particular experiments studied here are

described by Atlas et al. (1995 [1]) in a study of the impact of ERS-1 scatterometer data

on numerical weather prediction. The period of study is March, 1993. The forecast model

and data assimilation system used in these experiments are identical to the GEOS-1 system

described by Schubert et al., except for some minor bug fixes and the modifications necessary

to utilize surface wind vectors. Thus the control forecasts in the impact study are standard

GEOS forecasts. In addition to the CONTROL experiment, several using different types of

scatterometer wind information are available. Our initial prototyping and sensitivity studies

use only the 2 × 2.5 ° CONTROL forecast for the period 6-11 March 1993. In addition

we have made some comparisons to the corresponding PGLA and VARGLA forecasts. In

all cases the CONTROL GEOS data assimilation is used as verification. The PGLA and

VARGLA forecasts use the same setup as tile CONTROL forecast, l)ut both add ERS-1
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scatterometer data to the CONTROL data sets in determining the initial conditions for the

tbrecast. In PGLA the scatterometer data is processed using the directional filtering method

of Offiler (1994 [8]), while in VARGLA, the variational analysis method of Hoffman (1984

[4]) is applied to the ERS-1 _r° measurements.

3 Methodology

Since we require that these distortion fields vary smoothly, a spectral representation is ap-

propriate. Determining the distortion which provides the best match is then equivalent to

minimizing the misfit between the first field and a distortion of the second, with respect to the

spectral coefficients of the distortion. In the present project we use a global or hemispheric

domain, and spherical harmonics as basis functions.

In brief, the distortion is determined by minimizing the objective function J, by varying

the displacement and bias correction fields, where

J=_+&+&.

The residual cost function, Jr, measures the misfit of the distorted forecast to the verifying

analysis. Minimizing Jr improves the agreement between the (distorted) forecast and the

analysis. The two additional penalty terms in the objective function, Jd and J=, ensure

that the final distortion produced by the minimization is relatively smooth and not too

large. (The terms cost function, objective function and penalty function are used more or

less interchangeably in the literature. Here, the objective function is the quantity to be

minimized, a cost function measures lack of fit to data and a penalty function measures lack

of fit to a constraint.) The smoothness penalty function, Jd measures the roughness of the

x- and y-displacements and of the bias correction, ensuring that the distortion is large scale.

The barrier penalty function, J=, measures the magnitude of the distortion eomponents in a

way so that small distortions are not penalized, but large distortions are penalized heavily.

This has the effect of setting up a barrier to the size of the distortions which are determined.

These last two terms are evaluated using the spectral coefficients of the distortion.

The three terms making up J are described in the following sections. However, in our

work so far, the spectral truncations used are so severe that Ja and J= are not used in

obtaining the results presented here. In our studies at the beginning of the project we found

that using the barrier and smoothness penalty functions results in distortions which are

smaller in magnitude, but larger in scale, and residual errors which are larger in scale and

magnitude. The spectra of the original and residual forecast error, both with and without the

penalty functions show that a great deal of the forecast error on the scales of the distortion

is explained by the distortion and that the penalty constraints have a strong effect limiting
the smallest scales in the distortion.

Note that the limits used to define J= are found to be very useful to precondition the

minimization, even in cases where J= is not used in the functional. Simulation experiments

demonstrated that if the control vector is scaled by its limiting values estimate, the true

solution is quickly recovered. If the scaling is derived from the smoothing function instead,

the minimization quickly fails with false convergence. For the case of uniform scaling of the
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control vector, the minimization is only partially successful: the objective function is reduced

only slowly, and after 100 iterations, only half of the original forecast error is explained.

3.1 Residual cost function,

The residual cost function Jr measures the misfit between the distorted forecast and the

verifying analysis. We denote the forecast by F, the distorted forecast by P, and the verifying

analysis, or what is considered truth, by T. The cost function is evaluated over the glol)al
domain via

Jr = L(P- T)
L da

where the integral is the surface integral over the global domain. The distorted forecast P

is obtained from the unmodified forecast F by adding a location-dependent bias correction

B(A, 0) to the values displaced by the displacement vector field D(A,O) = (Du, D,), where

D is expressed here in terms of its zonal and meridional components, in analogy to a wind

field. Thus, we may write

P(A,O) = F(A',O') + B(.\,O),

where the location (1', 0') is found by following the displacement vector D(A, 0) back from

its endpoint (1, 0).

We represent the scalar field B by a truncated series of spherical harmonics, and the vector

field D in terms of the spectral coefficients of the corresponding vorticity (_) and divergence

((5) fields. A degree of smoothness can thus easily be imposed by the truncation of the series,

and further constraints can separately be imposed on the divergent and rotational parts of

the displacement field. The control vector C for the optimization problem is thus composed

of the spectral coefficients for B, ( and 5:

C = (B,¢,,S) r.
s

Both the forecast F and the verifying analysis T are available on regular latitude-

longitude grids. For evaluation of the integral, it is convenient to first interpolate T to

a Gaussian latitude-longitude grid, in which case the formula for Jr takes the form

wj _J =Eg .
3 i

where indices i,j denote the grid point location in longitude and latitude, Nj is the number

of longitude points for latitude j (this number will depend on j only for reduced Gaussian

grids), and wj is the Gaussian weight for latitude j. These weights are normalized such that

their sum over all latitudes is unity.

The first step in the evaluation of the Pij requires the spectral transformation from C

to Bij and (Du, Dv)ij. The next step is the evaluation of F(A', 0'). Following Ritchie (1987

[9]), we define latitude-longitude points in terms of 3-ditnensional cartesian vectors centered

on the unit sphere. The origin point (A', 0t), corresponding to the 3-dimensional cartesian

vector r, is then found in the plane of the endpoint location vector g (corresponding to

gridpoint (A_, Oj)), and the displacement vector d (corresponding to (Du, D,,)O):

r = ag +/3d,
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where the coefficients a and /3 are chosen to satisfy the constraint that r must lie on the

surface of the sphere, and that the length of the displacement vector d is equal to the great

circle distance between g and r. Finally, tile value F(A',0') must be obtained by bilinear

interpolation in longitude and latitude from the surrounding grid point values.

3.2 Smoothness penalty function, Jd

The smoothness penalty function, Jd is given by a simple quadratic form in terms of the

spectral coefficients of the distortion,

J_ = EjwjC_, (1)

where j ranges over the ordering of the spectral wavenumber vectors, k, and over the compo-

nents of the distortion--B, _, _. Different specifications of wj are under study. For example,

consider the part of Jd due to the bias correction. In continuous form this is given by,

1

Jd,, = a--_B//(V2_B) 2.

Here _' is an adjustable parameter normally taken to be 1 and as is the scale for B. Larger

values of _, result in greater smoothing by emphasizing the contributions of higher wavenum-

bers to Jd. Using the spectral representation of B, the orthonormality of the spherical

harmonics k_,_'_, and the eigenstructure V2q2n m = -n(n + 1)k0, TM, we find that,

3.3 Barrier penalty function, Ja

The functional J_ serves to limit the amplitude of the distortion. For efficiency the limits

are set on the spectral coefficients. These limits are chosen in such a way that the grid

point (or physical space) values of bias and displacement at all locations will be limited

by specified values. In addition the spectral coefficient limits provide a good scaling (or

conditioning) for the minimization. Test runs using synthetic data indicate that convergence

of the minimization is sensitive to the scaling of the control vector.

The form of J_ is chosen to be,

jo = zj(cj/sj) 2.,

where Sj are the spectral limiting values for the Cj. The adjustable parameter/t, nominally

10, controls the steepness of the barrier in spectral space (Fig. 1).

There is no unique way of setting the spectral limits. We choose limits which correspond

to an equipartitioning, among the spectral modes, of the contributions to the physical space

bias correction or displacement component. Here mode means each pair (re, n). The rea-

soning for this is that no matter what the signs of the spectral coefficients, the modes will

tend to add up somewhere in the physical domain. On the other hand, the contributions

within a particular mode, for example due to the sine and cosine components, are always

out of phase and therefore add up in an rms sense. The limits on components are chosen to

correspond to a further equipartitioning.



7bclmical l_el>ort (H_,i,sion : 1.12) 5

o
o3"

i.o

>o

w_
,::5

c)
6

o o o:s 1:o l:s 2:o
X

Figure i: The component of the barrier function for a single term (y = x 2u where x = Cj/Sj),

for # equal to 1, 2, 10, 20.

3.4 Implementation details

The algorithm is implemented in Splus and Fortran. The spectral transform and computation

of Gaussian latitudes and weights use a set of general purpose Fortran library functions. All

computations are performed in double precision. To minimize J we use the built-in Splus

function nlminb, which implements the algorithms of Dennis el al. (1981 [3]). The nlminb

algorithm uses function and gradient values. Second derivatives of the cost function are

estimated by finite differences, using repeated evaluations of the gradient and cost function.

At first we used the version of the minimization algorithm which requires function values

only. However, the finite difference approach is computationally inefficient, and we have

recently developed the adjoint of the calculation of J. To develop the adjoint we use tools

previously developed for this purpose (Hoffman et al. 1992 [6]). In addition, in the present

case the spectral transforms are nearly self-adjoint (Hoffman and Nehrkorn 1989 [7]), so

the amount of actual adjoint code for the transforms is limited. The adjoint calculates the

gradient of the cost function very efficiently. This technique gains more than an order of

magnitude decrease in computational time and provides a more accurate gradient, thereby

eliminating some difficulties reported last year.

For example, in our first annum report, one concern was reproducibility. We reported that

the minimization sometimes terminated immediately with a "false convergence" condition

when starting from the reasonable initial estimate of zero distortion. As discussed, this is a

point of maximum non-differentiability and the finite difference calculation of the gradient

here is very sensitive to the step size. To avoid this problem, we set the initial estimate to

random munbers. Use of random initial estimates brings with it a concern for reproducibility.

We have made two enhancement to eliminate this problem. First, we interpolate the

original analysis to a new grid using Gaussian latitudes and longitudes offset by half a grid
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length. Now a zero displacement corresponds to locations interior to the grid of tile analysis,

where the interpolation of the analysis is differentiable. Second, use of the adjoint eliminates

finite difference errors.

Another concern was convergence. Now, with the efficiency of the adjoint code, we can

eliminate this concern by using more than enough iterates. All results presented here use
100 iterations.

4 Results

Our results show that the methodology works, that a large part of the total error may be

explained by a distortion limited to T10 truncation (i.e., triangular truncation at wavenumber

10), and that the remaining residual error contains mostly small spatial scales. With forecasts

separated by 12 h, time continuity of the distortion fields describing the forecast errors is

present in some regions, but lacking in other regions.

Experiments so far are all based on the first set of forecasts described in Section 2 for

the CONTROL, PGLA and VARGLA experiments. The CONTROL experiment analyses

are always used as the verification.

Initially we focused on the northern hemispheric 72 h (_ONTROL forecast of 500 hPa

height valid at 00 UTC 9 March 1993. In the nominal case, we use T10 truncation and

a Gaussian grid with half the resolution of the forecast fields to represent the distortion,

and do not use the barrier and smoothing functions. Preliminary real data tests using T5

truncation were unsatisfactory and spectral analysis of the forecast and verification fields

indicated that the minimum required wavenumber truncation is 10. Some of these results

were reported on in our first annual technical report. More recently we have extended our

work to the sea level pressure (SLP) field, and to the PGLA and VARGLA experiments for

forecast ranges of 12 - 120 h.

In general, the distortion fields appear to properly account for the forecast errors. Visual

examination of the distortion fields reveals a number of features with phase and amplitude

errors, some of which will be discussed below. Table 1 shows that the size of the forecast

errors for SLP increases with time for the CONTROL forecast and that the percentage of

the squared error explained by the distortion increases from 82% to 94%. In general, both

the displacements and biases increase with forecast length for the first 72 h. This is obvious

in both the plots (shown for one region below) and in statistics of the solutions.

In Table 1 the statistics are calculated as follows for each run for the distortion corre-

sponding to the initial estimate of zero distortion and to the solution. The rms error is the

rms residual error for the hemisphere (in rob), calculated as the square root of J_. The rms

gradient is the rms scaled gradient (in rob2), calculated as

S OJ 2 1/2
(_( J-_) ) ,

j vvj

where the Sj are scales given by the limiting values defined in Section 3.3. The distortion

size is the dimensionless distance in scaled phase space, calculated as

( (G/sj)b
J
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Table 1: Summary statistics for SLP for the CONTROL forecast every 24 h. The calculation
of the statistics is described in the text.

Forecast Initial rms Distortion Final rms

Hour Error Gradient Size Error Gradient

24 2.545 3.303 11.183 1.094 0.110

48 4.506 7.480 23.509 1.787 0.153

72 6.727 10.280 30.490 2.199 0.106

96 7.672 12.333 33.173 2.295 0.121

120 9.060 17.618 29.447 2.217 0.162

In all cases 100 iterations were used by the minimization. Clearly the minimization greatly

reduces the size of the gradient and the residual error.

4.1 East coast cyclogenesis

Figure 2 shows the evolution of the SLP field in the GEOS CONTROL assimilation at 24 h

intervals beginning with the CONTROL initial conditions of 00 GMT 6 March 1993, for

a region centered on the east coast of North America. A low forming off of New Jersey

intensifies for 72 h and tracks ENE towards Iceland for the entire 120 h period. At 48 h a

second low enters the domain over the Great Lakes (panel c) and follows the primary low,

nearly merging with it at 120 h. This second low does not intensify during this period.

Finally, a third low appears over Pennsylvania at 120 h.

By 96 h the primary low is no longer intensifying and is now positioned somewhat ahead

of the upper level trough at 500 rob. The 500 mb verification and CONTROL forecast are

shown in Fig. 3, (panels a and c). The second trough, with a closed low just south of

the Canadian maritimes is too intense and has not moved eastward enough'in the forecast.

The main feature in the error field (forecast minus analysis) is therefore an area of negative

difference, extending along the eastern seaboard (e). The distorted forecast (b) is much

closer to the verification (a). The residual error (f), that is the error not explained by the

distortion, is not only small in magnitude, but also small in scale. The distortion (d) is

shown as vectors indicating how the forecast is displaced and as a height bias which is added

to the displaced forecast.

In this case, after 100 iterations, a solution for the distortion is reached which reduces

the rms residual error from 74.29 m to 17.04 m, which corresponds to a 19-fold reduction in

the objective function. The distortion field has significant displacements (exceeding 500 km

in some locations) and bias corrections (100 m).

The minimization procedure uses all degrees of freedom available to match the distorted

forecast to the verification. Thus, the differences in the secondary trough are partly ex-

plained by eastward displacement, and by a dipole in the bias field. In addition northward

components of the displacement near Georgia act on the gradient of zonally averaged 500 rnb

height to weaken the trough in this area. Some of these distortion field features run counter

to our intuitive expectations and we address possible remedies in Section 5.1.1.

At the surface at 96 h, the secondary surface low in the CONTROL forecast (Fig. 4.a) is
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Figure 2: Evolution of the SLP field in the GEOS CONTROL assimilation every 24 h starting
with the initial conditions of 00 GMT 6 March 1993.
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Figure 3: The 96 h 500 mb verification (a), distorted forecast (b), CONTROL forecast (c),

distortion (d), forecast error (e), and residual error (f). All valid 00 GMT 10 Marcia 1993.
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stronger and positioned westward relative to verification. At Boston for example, the wind

would be stronger and with a more northerly component. The primary low is approximately

correct in terms of strength but is postioned northwest of the verifying low by several hundred

kilometers. The distortion (b) in this case has significant southeastward displacements in

the area of the primary low. In the area of the secondary low eastward displacements are

combined with positive bias corrections. The distortion for SLP is quite different from the

distortion for 500 mb.

The other panels in Fig. 4 show the forecasts and distortions for the PGLA and VARGLA

experiments. In PGLA, the two forecast lows are very similar to the CONTROL case, and

the distortions in these areas are similar. In VARGLA, the secondary low is weaker and

more in agreement with the verification. Note that for the region plotted, the VARGLA

distortion is larger, and the residual error is smaller.

Interestingly, all three forecasts show evidence of a strong front in the SLP field near

32W. In the CONTROL forecast this feature is oriented very nearly North-South, while in

both experiments with ERS-1 data, this front curves towards the west as one moves away

from the low. However, verification (Fig. 2.e) shows only a hint of a front in this location.

4.2 Central Pacific Ocean

We now focus on the region of the North Pacific Ocean near the dateline where more than one

"best" distortion is a potential solution due to the extreme differences in features between

the forecasts and the analyses; this results in poor time continuity of the resulting distortion

fields.

Figs. 5 thru 9 contain the verification, forecast, forecast error, distortion, and residual

error fields, respectively for the 72 - 120 h (day 3-5) forecasts. In each of the figures, the left

hand panels (a,c,e) contain the sea level pressure fields, and the right hand panels (b,d,f)

contain those for the 500 mb height fields.

First we compare the 500 mb height verification and forecast fields. On day 3 we see

that the verification shows two troughs, each with closed circulations, at 40N, 153E and

40N, 205E, respectively, separated by a broad ridge. The other important feature is another

trough at 50-55N and 170E, just east of the Kamchatka peninsula. The corresponding

forecast contains these features, but in a very different orientation. The easternmost trough

is greatly underforecast in intensity, and is seen only as a weak shortwave in the flow. The

western trough is also much weaker, and is located too far west, while the northern trough

is too strong and is positioned too far south and east, effectively eliminating the broad ridge

seen in the verification. By the day 4 and 5 (96 h and 120 h) time period the evolution of these

features in the forecast and verification maps diverges greatly. The western trough intensifies

into a major system while migrating northeastward. In response the ridge ahead of this

system sharpens and increases in amplitude. To the east the northern and southern troughs

coalesce at 210E. In contrast, the forecast field weakens the western trough, propagates the

weaker eastern shortwave out of the plot region, and incorrectly amplifies and slows down

the northern shortwave. The result is that by 120 h, the forecast and verification fields are

essentially one-half a synoptic wavelength out of phase with one another between 165E and

210E. This can be seen in the strong tripole pattern in the forecast error fields (Fig. 7) The

sea level pressure fields in this case are basically a reflection of the upper level fields and
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Figure 4: Impact of ERS-1 data on the 96 h SLP field. The left column shows the CON-

TROL, PGLA and VARGLA forecasts from top to bottom and the right column shows the

corresponding distortions. All valid 00 GMT 10 March 1993.
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show the same relative errors.

The patterns of the distortion fields show only limited temporal continuity, and this may

be due to the degree of misphasing between the forecast and verification features. This is

particularly true for the 500 mb height field distortions (Fig. 8.b,d,f). On day 3 the distortion

shows a large region of negative bias corrections in the center of the domain, possibly in

response to the two large positive forecast error centers associated with the eastern and

western troughs. With a higher spectral truncation, the algorithm may have been able to

resolve these into two distinct features. The displacement field shows a strong northward

component as it attempts to build the ridge seen in the verification. By days 4 and 5 the

bias correction fields have split somewhat into two centers, but they are not sharply-defined.

The displacement field on day 4 bears little resemblance to that on either day 3 or on day

5. Since the features in the forecast evolve into a configuration so different from that of the

verification there is no clearly "correct" displacement. This is consistent with our original

assumption that the technique requires similar features in both forecast and verification

maps in order to be effective. Nevertheless, the residual errors (Fig. 9.b,d,f) show that the

algorithm has still reduced the forecast error.

The sea level pressure distortions (Fig. 8.a,c,e) are somewhat more consistent in time, and

with the features seen in the error plots. The bias corrections show two centers of negative

values whose location and temporal evolution correspond to those in the forecast error plots.

The displacements in days 4 and 5 are consistent with one another, with a large area of

strong westward displacements. However, since the forecast and verification features are

so out of phase, these displacements are not very representative of the actual displacement

errors, even though they are again successful at reducing the forecast error, as seen in the

residual error fields (Fig. 9.a,c,e).

Figs. 10 and 11 show the day 5 distortions and corresponding forecast fields for the

CONTROL, PGLA, and VARGLA experiments. In general, the distortions are qualita-

tively similar from one experiment to another. The only exception is the sea level pressure

displacement field for the PGLA experiment. One important characteristi_ of the plots in

general is that the distortions of the pressure and height fields are often quite different from

one another. While this is not critical for the so-called assessment application of forecast

errors, it is important for potential use of the analysis application, when model fields may

be changed, prior to or as part of an objective analysis procedure.

5 Plans for future work

We have accomplished a lot in short order, but much remains to be done. In broad terms we

have developed and tested an efficient algorithm for determining distortions. The algorithm

and constraints must now be tested and tuned, and applied to larger data sets.

5.1 FY97 (the current contract)

Our immediate plans to extend the current research fall into several related subtopics, as

described in the following paragraphs.
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Figure 5: Verification fields for 72 h, 96 h, 120 h (forecast days 3-5), top to t)ottom. Left

column shows the verification fields for SLP and the right column shows the verification

fields for 500 z_b height.
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Figure 6: Forecast fields for 72 h, 96 h, 120 h (forecast days ;/-5), top to bottom, for the

CONTROL experiment. Left column shows the forecast fields for SLP and the right column

shows tile forecast fields for 500 rnb height.
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Figure 7: Forecast error fields for 72 h, 96 h, 120 h (forecast days 3-5), top to bottom, for

the CONTROL experiment. Left column shows the forecast error for SLP and the right

column shows the forecast error for 500 mb height.
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Figure 8: Distortion fields for 72 h, 96 h, 120 h (forecast days 3-5), top to bottom, for the

CONTROL experiment. Left column shows the distortion for SLP _nd the right column

shows the distortion for 500 mb height.
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Ii'igure 9: Residual error fields for 72 h, 96 h, 120 h (forecast days 3-5), top to bottom, for

the CONTROL experiment. Left column shows residual error for SLP and the right column

shows residua_l error for 500 r_/_ height.
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Figure 10: Distortion fields for the 120 h (day 5) forecast. Results for CONTROL, PGLA,

and VARGLA experiments are shown from top to bottom. Left column shows results for

$LP and right column shows results for 500 rnb height.
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Figure 11: Forecast fields for the 120 h (day 5) forecast. Results for CONTROL, PGLA,

and VARCLA experiments are shown from top to bottom. Left column shows results for

SLP and right column shows results for 500 rn6 height.
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5.1.1 More cases and variables

The analyses will be extended to other cases in the suite of experiments. So far we have

used only the Control and PGLA and VARGLA runs for 6 March. We have access to cases

for 6, 11, 16 and 21 March for Control, ESA, PNMC, and PGLA experiments. A complete

evaluation of the errors of all these experiments would constitute a major study. However

at least the other CONTROL forecasts will be analyzed. We will also examine some of the

Southern Hemisphere results since we know that significant impacts of scatterometer data

exist there.

Fields besides SLP and 500 mb height could be analyzed using distortions. Anomalies of

SLP and 500 mb height from the zonally averaged climate mean and potential vorticity should

provide distortions more in line with intuitive expectation. We will also experiment with

some displacement only distortions. We will also examine differences between the current

approach and determining first the displacement and then the bias correction, holding the

displacement fixed.

5.1 _2 Parameter sensitivity studies

We will examine the sensitivity of the distortion and error fields to the parameters of the

method v, O'd, O'A, va, #. The use of different spectral truncations and grid resolutions will be
studied.

Different ways of setting the spectral limits and/or scales will be explored. In particular,

we will try to eliminate some of the assumptions in the derivation of the spectral limits by

using the actual maximum amplitudes of the expansion functions evaluated on the transform

grid.

5.1.3 Refining Jd

We will experiment with different functional forms of Jd. For the simple measures of the

magnitude of the distortion and the lack of smoothness of the distortion, which are discussed

by Hoffman et al. (1995 [5]), Jd takes the form of Equation 1, where the weights wj depend

only the total wave number n. Several different forms for wj will be tried. For example we

might take wj = an 2_, where/_ is a small integer and where _ and/_ are to be determined.

To determine the optimal values we will cross-correlate the residual errors with the distortion

errors at various displacements. For this purpose we will vary the correlation window from

500 to 1000 to 2000 km. If significant correlations are present we should allow greater distor-

tions. If no significant correlations remain, we should try to further restrict the distortions.

These ideas will be tested in parallel with synthetic data for the same versions of jd.

We have so far examined distortions with no constaints other than spectral truncation.

The use of constaints like Jd and the choice of which variable to apply the distortion to

must be explored. Differences in the distortion fields for different forecast fields should be

examined in more detail.
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5.1.4 Time continuity

rlb investigate the time continuity of the distortions we examined forecasts every 12 h, for the

CONTROl, case of 6 March 1993. 'Fhe time continuity of the distortion during the course

of the forecast is good in some areas and involves large changes in other areas.

Methods to enforce consistency in the evolution of tile distortion must be developed.

Consistency is most lacking if a feature in the forecast may be explained in terms of more

than one feature in the verification. These situations are very sensitive to initial estimates

of tim distortion and the parameters of the algorithm. The use of Jd and better initial

estimates are expected to be helpful here. Also constaints like Jd might be applied to 12 or

24 h changes in the distortion.

For example, experiments will test the suitability of extrapolating distortions in time to

provide initial estimates for the minimization. The initial estimate of the 72 b, distortion

might be taken to be 1.5C48 h or 2C48 h - C24 h" This may also improve efficiency.

5.1.5 Use of the 6.7 ttm water vapor imagery

The second set of our proposed experiments compare satellite data--in this case geosta-

tionary 6.7 pm water vapor imagery--to a background field calculated from a short term

forecast. The 6.7 #m water vapor imagery data are ideal for our study since they have strik-

ing patterns and features, which can be matched by corresponding patterns and features

in the short term forecast. Additionally geostationary water vapor data are available with

high temporal frequency and near global coverage. However, we will begin our investigation

with VAS data only, since the METEOSAT sensors do not have on-board calibration. (See

Schmetz and Turpeinen (1988 [10]) for a discussion of the calibration of these data.)

The approach for this task will be similar to that taken for the 500 hPa height fields.

In this case, we take the short term forecast of the 6.7 #m water vapor imagery as X; and

the observed imagery as X=. There are two complications: the calculation 6f the simulated

6.7 pm water vapor imagery, which is discussed in the next paragraph, and the need to quality

control the observed imagery. Quality control is required because of limited coverage, missing

data, and the difficulty of simulating the 6.7 #m water vapor imagery at large incidence

angles, over high terrain for dry conditions, and in the presence of cloud. It will be necessary,

at least initially, to resample the imagery to a relatively coarse regular grid. Then we will

determine smooth displacement and amplification fields needed to best match the forecast

and imagery. The algorithm needed here is identical to that used for the 500 hPa height

fields. The resulting fields of displacement and amplification provide a correction to the
short term forecast.

We will simulate the 6.7 ttm water vapor imagery from the forecast values of temperature

and humidity using a standard radiative tranfer model (RTM). The simulated 6.7 #m water

vapor imagery will then be held fixed in determining the distortion. Changes in incidence

angle related to displacements on scales of 100 km are O( 1°). The sensitivity of the calculated

brightness temperature to incidence angle is small (Fig. 12) and will be assumed negligible

in these calculations. The RTM used in Fig. 12, and a candidate for future calculations is

MODTRAN. Although MODTRAN is inefficient, it is accurate and well documented (Berk

ctal. 1989 [2]).
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"Figure 12: Variation of 6.7 #rn brightness temperature with incidence angle for the U.S.

standard atmosphere.
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5.2 FY98 - FY00

We have already submitted a proposal for a continuation of this project. We propose to

demonstrate the usefulness of the distortion representation of forecast errors by conducting

realistic studies of the assessment application and the objective analysis application. For the

assessment application we will continue to study forecast errors of the 500 hPa geopotential

height field for forecasts of the short and medium range. The forecasts and analyses which

will be used are realistic quasi-operational forecasts. A preliminary to this task is to test and

tune EOF representations of the distortions, using the results of the current project for the

March 1993 forecasts. For the objective analysis application, we will apply the 6.7/lrn water

vapor imagery to determine short term forecast errors, as a standalone objective analysis

application. These tasks are described in our proposal submitted 20 June 1997.

References

[1]

[2]

[3]

R. Atlas, R. N. Hoffman, E. Brin, and P. M. Woiceshyn. The impact of ERS-1 scatterom-

eter data on GEOS model forecasts. In International Symposium on Assimilation of

Observations in Meteorology andOceanography, Tokyo, Japan, 13-17 Mar. 1995. WMO.

A. Berk, L. S. Berstein, and D. C. Robertson. MODTRAN: A moderate resolution

model for LOWTRAN 7. Technical Report 89-0122, Air Force Geophysics Laboratory,

Hanscom AFB, MA, 1989.

J. E. Dennis, D. M. Gay, and R. E. Welsch. An adaptive nonlinear least-squares algo-

rithm. A CM Transactions on Mathematical Software, 7:348-383, 1981.

[4] R. N. Hoffman. SASS wind ambiguity removal by direct minimization. II: Use of smooth-

ness and dynamical constraints. Mon. Weather Rev., 112:1829-1852, 1984.

[5] R. N. Hoffman, Z. Liu, J.-F. Louis, and C. Grassotti. Distortion representation of

forecast errors. Mon. Weather Rev., 123(9):2758-2770, Sept. 1995.

[6]

[7]

[81

[9]

[10]

R. N. Hoffman, J.-F. Louis, and T. Nehrkorn. A simplified view of adjoint calculations

in the discrete case. Technical Memorandum 184, Eur. Cent. for Med. Range Weather

Forecasts, Reading, England, 1992.

R. N. Hoffman and T. Nehrkorn. A simulation test of three-dimensional retrievals. Mon.

Weather Rev., 117:473-494, 1989.

D. Offiler. The calibration of ERS-1 satellite scatterometer winds. J. Atmospheric

Oceanic Technology, 11(4):1002-1017, Aug. 1994.

H. Ritchie. Semi-Lagrangian advection on a Gaussian grid. Mon. Weather Rev., 115:608-

619, 1987.

J. Schmetz and O. M. Turpeinen. Estimation of the upper tropospheric relative humidity

field from METEOSAT water vapor image data. J. Applied Meleorol., 27:889-8989,

1988.



24 AER, lnc, Distortion Representation of Forecast Errors Documentation

[11] S. D. Schubert, R. B. Rood, and J. Pfaendtner. An assimilated dataset for earth science

applications. Bull. Am. Meteorol. Soc., 74(12):2331-2342, Dec. 1993.

A Required forms

The required Report Documentation Pages (NASA Form 1626 and Standard Form 298) are

attached.



Report Documentation Page
So,_ce AOm_ ra_,on

1. Report No.

4. Title and Subtitle

2. Government Accession No. 3. Recipient's Catalog No.

=%

5. Report Date

Distortion Representation of Foreeast Errors for

Model Skill Assessment and Objective Analysis

7. Author{s}

Ross N. Hoffman, Thomas Nehrkorn and

Christopher Grassotti'

9. Performing Organization Name and Address

Atmospheric and Environmental

840 Memorial Drive

Cambridge, MA 02139

Research, Inc.

12. Sponsoring Agency Name and Address

NASA/GSFC

Earth Science Procurement Office

Greenbelt_ MD 20771

15. Supplementary Notes

8/15/97

6. Performing Organization Code

8. Performing Organization Report No.

P599

10. Work Unit No.

11. Contract or Grant No.

NAS5-32953

13. Type of Report and Period Covered

Tech. Report 8/15/97

14. Sponsoring Agency Code

16. Abstract

We proposed a novel characterization of errors for numerical weather predictions. A general

distortion representation allows for the displacement and amplification or bias correction of forecast

anomalies. Since we require that these distortion fields vary smoothly, a spectral representation is

appropriate. Determining the distortion is equivalent to minimizing the misfit between the
verification and a distortion of the forecast, with respect to the spectral coefficients of the distortion.

In the present project we use a hemispheric domain, and spherical harmonics as basis functions.

Characterizing and decomposing forecast error is important both for assessing forecast skill and for

objective analysis. In this project we focus on the assessment application, restricted to a realistic but

univariate 2-dimensional situation. Specifically we study the forecast errors of the sea level pressure

and 500 hPa geopotential height fields for forecasts of the short and medium range. Our results

show that the methodology works, that a large part of the total error may be explained by a distortion

limited to triangular truncation at wavenumber 10, and that the remaining residual error contains

mostly small spatial scales.

17. Key Words {Suggested by Authorls))

Numerical Weather Prediction

Forecast Errors

19. S_uri_ Cla_if. (of this report)

U_classified

18. Distribution Statement

Unlimited

]_. Securi W Cla_if. (of this pa_)

Unclassified
21. No_ of pages 22 Price



PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this

page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus it is important
that the information be correct. Instructions for filling in each block of the form are as follows:

Block 1. Report No. NASA report series number, if
preassigned.

Block 2. Government Accession No. Leave blank.

Block 3. Recipient's Catalog No. Reserved for use by each
report recipient.

Block 4. Title and Subtitle. Typed in caps and lower case
with dash or pedod separating subtitle from title.

Block 5. Report Date. Approximate month and year the
report will be published.

Block 6. Performing Organization Code. Leave blank.

Block 7. Author(s). Provide full names exactly as they are
to appear on the title page. If applicable, the word editor
should follow a name.

Block 8. Performing Organization Report No. NASA in-
stal|ation report control number and, if desired, the non-
NASA performing organization report control number.

Block 9. Performing Organization Name and Address. Pro-
vide affiliation (NASA program office, NASA installation,
or contractor name) of authors.

Block 10. Work Unit No. Provide Research and

Technology Objectives and Plans (RTOP) number.

Block 11. Contract or Grant No. Provide when applicable.

Block 12. Sponsoring Agency Name and Address.
National Aeronautics and Space Administration, Washing-
ton, D.C. 20546-0001. If contractor report, add NASA in*
stallation or HQ program office.

Block 13. Type of Report and Period Covered. NASA for-
mal report series; for Contractor Report also list type (in-

terim, final) and period covered when applicable.

Block 14. Sponsoring Agency Code. Leave blank.

Block 15. Supplementary Notes. Information not included
elsewhere: affiliation of authors if additional space is re-

quired for block 9, notice of work sponsored by another
agency, monitor of contract, information about sup-
plements (film, data tapes, etc.), meeting site and date for
presented papers, journal to which an article has been sub-
mitred, note of a report made from a thesis, appendix by
author other than shown in block 7.

Block 16, Abstract. The abstract should be informative

rather than descriptive and should state the objectives of
the investigation, the methods employed (e.g., simulation,
experiment, or remote sensing), the results obtained, and
the conclusions reached.

Block 17. Key Words. Identifying words or phrases to be
used in cataloging the report.

Block 18. Distribution Statement. Indicate whether report
is available to public or not. If not to be controlled, use
"Unclassified-Unlimited." If controlled availability is re-
quired, list the category approved on the Document
Availability Authorization Form (see NHB 2200.2, Form
FF427). Also specify subject category (see "Table of Con-
tents" in a current issue of STAR), in which report is to
be distributed.

Block 19. Security Classification (of this report).
Self-explanatory.

Block 20. Security Classification* (of this page).
Self-explanatory.

Block 21. No. of Pages. Count front matter pages begin-
ning with iii, text pages including internal blank pages, and
the RDP, but not the title page or the back of the title page.

Block 22. Price Code. If block 18 shows "Unclassified-

Unlimited," provide the NTIS price code (see "'NTIS Price
Schedules" in a current issue of STAR) and at the bot-

tom of the form add either "For sale by the National
Technical Information Service, Springfield, VA
22161-2171" or "For sale by the Superintendent of

Documents, U.S. Government Printing Office,
Washington, DC 20402-0001," whichever is appropriate.


